
1

The opinion in support of the decision being entered today was
not written for publication and is not binding precedent of the
Board.

 Paper No. 16

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

 Ex parte NAWAF K. BITAR, ROBERT M. ENGLISH
 and RAJAGOPAL ANANTHANARAYANAN

Appeal No. 2002-0792
Application 08/801,646

ON BRIEF

Before KRASS, FLEMING, and DIXON, Administrative Patent Judges.

FLEMING, Administrative Patent Judge.

DECISION ON APPEAL

This is a decision on appeal from the final rejection of

claims 1 through 6, 13, 14, 18 through 34, 40 through 46, and 52

through 55. Claims 7 through 12, 15 through 17, 35 through 39,

and 47 through 51 are objected to as being dependent upon a

rejected base claim, but would be allowable if rewritten in

Appeal No. 2002-0792
Application 08/801,646

2

independent form including all of the limitations of the base

claim and any intervening claims.

Invention

The invention relates to a method of scheduling parallel

processes in a distributed, multi-kernel, multiprocessor system.

In particular, the present invention relates to a system and

method for scheduling parallel processes with no kernel-to-kernel

communication. A thread model of program execution has proven to

be a viable method for parallel execution of program code both in

single and multiprocessor machines. Under the thread model,

programs are partitioned into a set of parallel activities. Each

activity during execution of the program code is called a thread.

See page 1 of Appellants’ specification.

The problem with the prior art systems is that if

scheduling of such a multi-threaded program requires excessive

kernel-to-kernel communication, the performance of the program

will suffer. Appellants’ invention solves this problem by using

nanothreads. A shared arena is provided in the user memory,

wherein the shared arena includes a register save area for each

of the plurality of threads. See page 9 of Appellants’

specification.

Appeal No. 2002-0792
Application 08/801,646

3

Appellants’ claim 1 is representative of the claimed

invention and is reproduced as follows:

1. In a computing system having a processor, a memory and a
kernel level scheduler, wherein the processor includes a user
mode and a protected kernel mode, a method of scheduling a
plurality of threads from a multi-threaded program for execution
in user mode, wherein the multi-threaded program includes a user
level scheduler, the method comprising the steps of:

defining a shared arena within the memory, wherein the
shared arena includes a register save area for each of the
plurality of threads; and

selecting, at the user level scheduler, a thread from the
plurality of threads to be executed on the processor, wherein the
step of selecting includes the step of reading register context
associated with the selected thread from one of the plurality of
register save areas.

References

The references relied on by the Examiner are as follows:

Anderson et al. (Anderson), “Scheduler Activations: Effective
Kernel Support for the User-Level Management of Parallelism”,
Department of Computer Science and Engineering, University of
Washington, Seattle, WA, pp 95-109 (1991).

Polychronopoulos et al. (Polychronopoulos), “Nano-Threads: A
User-Level Threads Architecture”, CSRD TR 1297, 1993, pp 2-22.

Rejections at Issue

Claims 1 through 6, 13, 14, 18 through 34, 40 through 46,

and 52 through 55 stand rejected under 35 U.S.C. § 103 as being

unpatentable over Anderson in view of Polychronopoulos.

Appeal No. 2002-0792
Application 08/801,646

4

OPINION

With full consideration being given to the subject matter on

appeal, the Examiner’s rejections and the arguments of Appellants

and the Examiner, for the reasons stated infra, we reverse the

Examiner’s rejection of claims 1 through 6, 13, 14, 18 through

34, 40 through 46, and 52 through 55 under 35 U.S.C. § 103.

In rejecting claims under 35 U.S.C. § 103, the Examiner

bears the initial burden of establishing a prima facie case of

obviousness. In re Oetiker, 977 F.2d 1443, 1445, 24 USPQ2d 1443,

1444 (Fed. Cir. 1992). See also In re Piasecki, 745 F.2d 1468,

1472, 223 USPQ 785, 788 (Fed. Cir. 1984). The Examiner can

satisfy this burden by showing that some objective teaching in

the prior art or knowledge generally available to one of ordinary

skill in the art suggests the claimed subject matter. In re

Fine, 837 F.2d 1071, 1074, 5 USPQ2d 1596, 1598 (Fed. Cir. 1988).

Only if this initial burden is met does the burden of coming

forward with evidence or argument shift to the Appellants.

Oetiker, 977 F.2d at 1445, 24 USPQ2d at 1444. See also Piasecki,

745 F.2d at 1472, 223 USPQ at 788.

Appeal No. 2002-0792
Application 08/801,646

5

An obviousness analysis commences with a review and

consideration of all the pertinent evidence and arguments. “In

reviewing the [E]xaminer’s decision on appeal, the Board must

necessarily weigh all of the evidence and argument.” Oetiker,

977 F.2d at 1445, 24 USPQ2d at 1444. “[T]he Board must not only

assure that the requisite findings are made, based on evidence of

record, but must also explain the reasoning by which the findings

are deemed to support the agency’s conclusion.” In re Lee, 277

F.3d 1338, 1344, 61 USPQ2d 1430, 1434 (Fed. Cir. 2002). With

these principles in mind, we commence review of the pertinent

evidence and arguments of Appellants and Examiner.

Appellants argue that for claims 1, 19 and 23, the Examiner

has failed to show that Polychronopoulos teaches a shared arena

within the memory, wherein the shared arena includes a register

save area for each of the plurality of threads. Appellants also

argue that neither Anderson nor Polychronopoulos teaches a shared

arena including a register save area for a plurality of threads

or reading register context associated with a selected thread of

plurality of register save areas as recited in Appellants’ claims

1, 19 and 23. See page 8 of Appellants’

Appeal No. 2002-0792
Application 08/801,646

6

brief. We note that Appellants’ claim 1 recites:

defining a shared arena within the memory, wherein the
shared arena includes a register save area for each of the
plurality of threads; and

selecting, at the user level scheduler, a thread from
the plurality of threads to be executed on the processor,
wherein the step of selecting includes the step of reading
context associated with the selected thread from one of the
plurality of register save areas.

We also note that Appellants’ claim 19 recites:

first program code executing in the processor for
creating a shared arena within the memory, wherein the
shared arena includes a register save area for each of the
plurality of threads; and

second program code executing in the processor, wherein
the second program code includes scheduling code for
scheduling threads from the plurality of threads, wherein
the scheduling code includes program code for selecting a
thread from the plurality of threads and for switching to
the selected thread by reading register context associated
with the selected thread from one of the plurality of
register save areas.

Appellants’ claim 23 recites:

first program code executing in one of the plurality of
processors for creating a shared arena within the memory,
wherein the shared arena includes a register save area for
each of the plurality of threads; and

second program code executing in the processor, wherein
the second program code includes scheduling code for
scheduling threads from the plurality of threads, wherein
the scheduling code includes program code for selecting a
thread from the plurality of threads and for switching to
the selected thread by reading register context associated
with the selected thread from one of the plurality of
register save areas.

Appeal No. 2002-0792
Application 08/801,646

7

The Examiner states that Anderson does not expressly teach a

shared arena within the memory, wherein the shared arena includes

a register save area and selecting includes the step of reading

register context associated with the selected thread from one of

the plurality of register save areas. See page 3 of the answer.

The Examiner relies on Polychronopoulos for this teaching. The

Examiner points us to page 7 and page 9 of Polychronopoulos.

Upon our review of Polychronopoulos, we find that in section

3 titled “Scheduler-Kernel Interfaces” found on page 6,

Polychronopoulos teaches that in order to properly support the

user-level scheduling model, a set of communication points

between the user-level scheduler and the kernel must be defined.

Polychronopoulos then further states that these interfaces will

allow the user-level scheduler to request/release processor

resources and reorder run queues. Polychronopoulos then further

states that the reference only defines the interface semantic and

does not specify the implementation of the communication

mechanism. Polychronopoulos then suggests that some

implementations may choose to use a block of shared memory used

between the user-level scheduler and the kernel as the

communication venue while other implementations may be an

explicit upcall mechanism as described in Anderson. We agree

Appeal No. 2002-0792
Application 08/801,646

8

with the Examiner that the suggestion to use shared memory

between the user-level scheduler and the kernel as a

communication venue is of interest. However, we fail to find

that Polychronopoulos has described any further details of such a

communication mechanism other than this one suggestion.

Therefore, we fail to find that Polychronopoulos teaches the

above limitations as recited in Appellants’ claims 1, 19 and 23.

Appellants also argue that Polychronopoulos and Anderson

fail to teach the use of shared arena as a communication

mechanism for conveying register context in the scheduling of

threads and the use of a number requested variable and a number

allocated variable, both of which are stored in the shared arena,

to allocate threads to the processor as recited in Appellants’

claim 13. See page 10 of the brief.

We note that Appellants’ claim 13 recite:

defining a shared arena within the memory, wherein the
shared arena includes a register save area for each of the
plurality of threads;

starting the program, wherein the step of starting the
program includes the step of setting, via the user level
scheduler, a number requested variable within the shared
arena requesting that one or more processors from the
plurality of processors be assigned to the program and
setting, via the kernel level scheduler, a number allocated
variable within the shared arena indicating how many
processors from the plurality of processors are assigned to
the program; and

Appeal No. 2002-0792
Application 08/801,646

9

allocating, at the user level scheduler, one or more
threads of the plurality of threads to each of the
processors assigned to the program, wherein the step of
allocating includes the step of reading register context
from one of the plurality of register save areas.

For the reasons as we have pointed out above, we fail to find

that Polychronopoulos or Anderson teaches the above limitations.

For claims 27, 40 and 52, Appellants argue that the Examiner

has failed to show how the references cite and teach or suggest

all the limitations recited in these claims. In particular,

Appellants argue that the Examiner has not shown how the

references teach the use of a first and second kernel of

scheduler to schedule threads across a first and second kernel.

We note that Appellants’ claim 23 recites:

a kernel level scheduler, executing within the
protected kernel mode of one of the plurality of processors,
for allocating processors to a program;

first program code executing in one of the plurality of
processors for creating a shared arena within the memory,
wherein the shared arena includes a register save area for
each of the plurality of threads; and

second program code executing in the processor, wherein
the second program code includes scheduling code for
scheduling threads from the plurality of threads, wherein
the scheduling code includes program code for selecting a
thread from the plurality of threads and for switching to
the selected thread by reading register context associated
with the selected thread from one of the plurality of
register save areas.

Appeal No. 2002-0792
Application 08/801,646

10

We note that Appellants claims 40 recites:

allocating a shared arena within the memory, wherein
the shared arena is accessible to said first and second
kernel level schedulers and wherein the shared arena
includes a user-level run queue;

setting a number requested variable within the shared
arena requesting that one or more processors from the
plurality of processors be assigned to process the plurality
of threads;

setting, via the first kernel level scheduler, a number
allocated variable within the shared arena indicating the
number of first processors that are assigned to process the
plurality of threads;

selecting one or more of the plurality of threads from
the user-level run queue;

assigning one of the plurality of threads selected from
the user-level run queue to each of the assigned first
processors;

adding to the number allocated variable within the
shared arena a number indicating the number of second
processors that are assigned to process the plurality of
threads;

selecting one or more of the plurality of threads from
the user-level run queue.

Appellants’ claim 52 recites:

allocating a first and a second shared arena within the
memory, wherein each shared arena includes a register save
area;

forming a queue of threads from the first program;

forming a queue of threads from the second program;

setting a number requested variable within the first

Appeal No. 2002-0792
Application 08/801,646

11

shared arena requesting that one or more processors from the
plurality of processors be assigned to process the plurality
of threads from the first program;

setting, via the first kernel level scheduler, a number
allocated variable within the first shared arena indicating
the number of first processors that are assigned to process
the plurality of threads from the first program;

assigning one or more threads of the plurality of
threads from the first program to each of the assigned first
processors, wherein the step of assigning includes the step
of reading register context from one of the plurality of
register save areas within the first shared arena;

adding to the number allocated variable within the
first shared arena a number indicating the number of second
processors that are assigned to process the plurality of
threads from the first program;

assigning one or more threads of the plurality of
threads from the first program to each of the assigned
second processors, wherein the step of assigning includes
the step of reading register context from one of the
plurality of register save areas within the first shared
arena;

setting a number requested variable within the second
shared arena requesting that one or more processors from the
plurality of processors be assigned to process the plurality
of threads from the second program;

setting, via the first kernel level scheduler, a number
allocated variable within the second shared arena indicating
the number of first processors that are assigned to process
the plurality of threads from the second program; and

assigning one or more threads of the plurality of
threads from the second program to each of the assigned
first processors, wherein the step of assigning includes the
step of reading register context from one of the plurality
of register save areas within the second shared arena.

Appeal No. 2002-0792
Application 08/801,646

12

We fail to find that the Examiner has shown that Anderson or

Polychronopoulos teaches these above limitations.

In view of the foregoing, we have not sustained the

Examiner’s rejection of claims 1 through 6, 13, 14, 18 through

34, 40 through 46, and 52 through 55 under 35 U.S.C. § 103 as

being unpatentable over Anderson in view of Polychronopoulos.

REVERSED

ERROL A. KRASS)
Administrative Patent Judge)

)
)
) BOARD OF PATENT

MICHAEL R. FLEMING)
Administrative Patent Judge) APPEALS AND

)
) INTERFERENCES
)

JOSEPH L. DIXON)
Administrative Patent Judge)

MRF:pgc

Appeal No. 2002-0792
Application 08/801,646

13

Schwegman Lundberg Woessner & Kluth
P.O. Box 2938
Minneapolis, MN 55402

